Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(6): 191, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702442

RESUMO

Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.


Assuntos
Cádmio , Endófitos , Metais Pesados , Sementes , Microbiologia do Solo , Poluentes do Solo , Endófitos/metabolismo , Endófitos/isolamento & purificação , Metais Pesados/metabolismo , Sementes/microbiologia , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Biodiversidade , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Solo/química , Biodegradação Ambiental , Raízes de Plantas/microbiologia
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 969-1001, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37552317

RESUMO

Dysphania ambrosioides L. (Chenopodiaceae) is a Moroccan medicinal plant known locally as "M'Khinza." It is widely used in traditional medicine to treat numerous ailments, such as diabetes, digestive disorders, fever, fertility problems, immune disorders, hypertension, bronchitis, respiratory conditions, pharyngitis, cough, and flu. As part of this review, comprehensive preclinical investigations, including in vitro, in vivo, and in silico studies, were conducted to better understand the mechanisms of action of D. ambrosioides. Additionally, the phytochemical profile of the plant was examined, highlighting the presence of certain bioactive secondary metabolites. The information was gathered from electronic data sources such as Web of Science, PubMed, Science Direct, Scopus, Springer Link, and Google Scholars. Numerous studies have mentioned the pharmacological properties of D. ambrosioides, including its antioxidant, anti-inflammatory, antiparasitic, antiviral, antibacterial, and antifungal activities. Furthermore, research has also suggested its potential as an anticancer, antidiabetic, and vasorelaxant agent. Phytochemical characterization of D. ambrosioides has revealed the presence of over 96 major bioactive compounds, including terpenoids, polyphenols, flavonoids, alkaloids, and fatty acids. As for the toxicity of this plant, it is dose-dependent. Furthermore, more in-depth pharmacological studies are needed to establish the mechanisms of action of this plant more accurately before considering clinical trials. In conclusion, this review highlights the traditional use of D. ambrosioides in Moroccan medicine and emphasizes its potential pharmacological properties. However, to fully harness its therapeutic potential, further research, both in terms of chemistry and pharmacology, is necessary. These future studies could help identify new active compounds and provide a better understanding of the mechanisms of action of this plant, thus opening new prospects for its pharmaceutical application.


Assuntos
Anti-Infecciosos , Medicina Tradicional , Fotoquímica , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade
3.
In Silico Pharmacol ; 11(1): 15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323538

RESUMO

Triple-negative breast cancer (TNBC) is a lethal and aggressive breast cancer subtype. It is characterized by the deficient expression of the three main receptors implicated in breast cancers, making it unresponsive to hormone therapy. Hence, an existing need to develop a targeted molecular therapy for TNBC. The PI3K/AKT/mTOR signaling pathway mediates critical cellular processes, including cell proliferation, survival, and angiogenesis. It is activated in approximately 10-21% of TNBCs, emphasizing the importance of this intracellular target in TNBC treatment. AKT is a prominent driver of the PI3K/AKT/mTOR pathway, validating it as a promising therapeutic target. Dysphania ambrosioides is an important ingredient of Nigeria's traditional herbal recipe for cancer treatment. Thus, our present study explores its anticancer properties through a structure-based virtual screening of 25 biologically active compounds domiciled in the plant. Interestingly, our molecular docking study identified several potent inhibitors of AKT 1 and 2 isoforms from D. ambrosioides. However, cynaroside and epicatechin gallate having a binding energy of - 9.9 and - 10.2 kcal/mol for AKT 1 and 2, respectively, demonstrate considerable drug-likeness than the reference drug (capivasertib), whose respective binding strengths for AKT 1 and 2 are - 9.5 and - 8.4 kcal/mol. Lastly, the molecular dynamics simulation experiment showed that the simulated complex systems of the best hits exhibit structural stability throughout the 50 ns run. Together, our computational modeling analysis suggests that these compounds could emerge as efficacious drug candidates in the treatment of TNBC. Nevertheless, further experimental, translational, and clinical research is required to establish an empirical clinical application. Graphical Abstract: A structure-based virtual screening and simulation of Dysphania ambrosioides phytochemicals in the active pocket of AKT 1 and 2 isoforms.

4.
Chem Biodivers ; 20(3): e202200768, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36694378

RESUMO

Mexican tea (Dysphania ambrosioides (L.) Mosyakin & Clemants) is rich in phenolic acids and flavonoids and could be a potential medicinal herb that can be used for prevention of human hepatocellular carcinoma. The objective of this study was to elaborate the possible mechanism for the prevention or treatment of hepatocellular carcinoma using Mexican tea, and to provide new avenues for the utilization of the invasive plant. In this study, the D. ambrosioides seed extracts (CSE) were analyzed by gas chromatography-mass spectrometry, and the effects of CSE on proliferation, migration, invasion, and gene expression of SMMC-7721 cells were investigated. Eight compounds were identified in CSE, and the compound with the highest content was ascaridole (25.82 %). The proliferation was significantly inhibited by CSE (p<0.05), and IC50 values were 0.587 g/L, 0.360 g/L, and 0.361 g/L at 24 h, 36 h, and 48 h, respectively. Migration and invasion were significantly inhibited (p<0.05). The network pharmacology and transcriptome analysis indicated that 2-hydroxy-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one, cis-11-eicosenoic acid and 2-ethylcyclohexanone might be the active compounds. Transcriptome analysis indicated that the Wnt signaling pathway, which is related to migration and invasion, was significantly altered; this was verified by western blot assay. The expression of wnt11, lef1 and mmp7 genes in SMMC-7721 cells was significantly down-regulated (p<0.05), while gsk-3ß was significantly up-regulated (p<0.05). These results indicate that CSE inhibits the invasion and migration of SMMC-7721 cells in hepatocellular carcinoma through the Wnt signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Extratos Vegetais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Chá
5.
Front Microbiol ; 13: 995830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212824

RESUMO

Metal-induced oxidative stress in contaminated soils affects plant growth. In the present study, we evaluated the role of seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. A series of pot experiments were conducted under variable Zn (500, 1,000, and 1,500 mg kg-1) and Cd (5, 15, 30, and 60 mg kg-1). The results demonstrated that FXZ2-inoculation significantly enhanced the growth of D. ambrosioides and improved its chlorophyll and GSH content. In the rhizosphere, FXZ2 inoculation changed the chemical speciation of Zn/Cd and thus affected their uptake and accumulation in host plants. The exchangeable and carbonate-bound fractions (F1 + F2) of Zn decreased in the rhizosphere of FXZ2-inoculated plants (E+) as compared to non-inoculated plants (E-) under Zn stress (500 and 1,000 mg kg-1), correspondingly, Zn in the shoots of E+ decreased (p < 0.05). However, at Cd stress (30 and 60 mg kg-1), the F1 + F2 fractions of Cd in E+ rhizospheric soils increased; subsequently, Cd in the shoots of E+ increased (p < 0.05). FXZ2 could exogenously secrete phytohormones IAA, GA, and JA. The study suggests that seed endophyte FXZ2 can increase Zn/Cd tolerance of host plant by altering Zn/Cd speciation in rhizospheric soils, as well as exogenous production of phytohormones to promote growth, lowering oxidative damage while enhancing antioxidant properties. For Zn/Cd accumulation, it has opposite effects: Zn uptake in E+ plants was significantly (p < 0.05) decreased, while Cd accumulation in E+ plants was significantly (p < 0.05) increased. Thus, FXZ2 has excellent application prospects in Cd phytoextraction and decreasing Zn toxicity in agriculturally important crops.

6.
Toxins (Basel) ; 14(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35878213

RESUMO

Dysphania ambrosioides (L.) Mosyakin and Clemants is a medicinal plant that has traditionally been used to cure a range of diseases. There has been no thorough investigation of the potential toxicity of this plant. The objective of this study is to assess the acute and subacute toxicity of D. ambrosioides hydroethanolic extract (DAHE), as well as it alkaloids composition, utilizing LC-MS/MS analysis. An in silico approach was applied to determine pharmacokinetic parameters and to predict the toxicity of D. ambrosioides identified alkaloids. A 14-day treatment with a single oral dose of 1-7 g/kg was carried out to investigate acute toxicity. DAHE was given orally at dosages of 5, 50, and 500 mg/kg for 15 days in the subacute toxicity investigation, and body weight and biochemical parameters were evaluated. Livers, kidneys, lungs, and heart were examined histologically. Chromatographic investigation revealed the existence of nine alkaloids, with N-formylnorgalanthamine being the most prevalent. The oral LD50 value of DAHE was found to be 5000 mg/kg in an acute toxicity study. No variations were observed with respect to food intake, water consumption, mortality, or body and organ weight in the subacute toxicity study. On the other hand, DAHE (500 mg/kg) significantly enhanced alanineaminotransferase, aspartate aminotransferase, and urea. Liver and kidney histological examinations revealed modest infiltration of hepatocyte trabeculae by inflammatory cells in the liver and slight alteration in the kidney histoarchitecture. According to our findings, DAHE exhibits low to moderate toxicity.


Assuntos
Alcaloides , Espectrometria de Massas em Tandem , Alcaloides/análise , Alcaloides/toxicidade , Cromatografia Líquida , Flores/química , Extratos Vegetais/química , Testes de Toxicidade Aguda
7.
Antibiotics (Basel) ; 11(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35453233

RESUMO

Dysphania ambrosioides (L.) Mosyakin and Clemants, also known as Mexican tea, and locally known as Mkhinza, is a polymorphic annual and perennial herb, and it is widely used in folk medicine to treat a broad range of illnesses in Morocco. The aim of this study was to determine the phytochemical content and the antioxidant and the antibacterial properties of essential oils isolated from D. ambrosioides aerial components, growing in Eastern Morocco (Figuig). Hydrodistillation was used to separate D. ambrosioides essential oils, and the abundance of each phytocompound was determined by using Gas Chromatography coupled with Mass Spectrometry (GC-MS). In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibition of ß-carotene/linoleic acid bleaching assays were used to determine D. ambrosioides essential oils' antioxidant activity. The findings revealed relative antioxidative power and modest radical scavenging. The antibacterial activity of the essential oils was broad-spectrum, with Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis as the most susceptible strains tested. To elucidate the physicochemical nature, drug-likeness, and the antioxidant and antibacterial action of the identified phytocomponents, computational techniques, such as ADMET analysis, and molecular docking were used.

8.
Cureus ; 13(9): e17775, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34659986

RESUMO

We report the case of potential Dysphania ambrosioides (Silverweed) intoxication in the context of SARS-COV-2 infection in a patient admitted for delirium with Glasgow Coma Score (GCS) of 13/15. This herb was used as an antipyretic to treat COVID-19 persistent fever. The clinical presentation of our patient raised several questions related to the viral or herbal intoxication origin of the confusion syndrome. To our knowledge, this is the first description of toxic encephalopathy after D. ambrosioides ingestionin an adult patient.

9.
Chem Biodivers ; 18(12): e2100678, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34669244

RESUMO

Despite the current treatments against Chagas Disease (CD), this vector-borne parasitic disease remains a serious public health concern. In this study, we have explored the in vitro and/or in vivo trypanocidal and cytotoxic activities of the essential oils (EOs) obtained from Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) (DA-EO), Lippia alba (Mill.) N.E. Brown (Verbenaceae) (LA-EO), and Tetradenia riparia (Hochst.) Codd (Lamiaceae) (TR-EO) grown in Brazil Southeast. DA-EO was the most active against the trypomastigote and amastigote forms in vitro; the IC50 values were 8.7 and 12.2 µg mL-1 , respectively. The EOs displayed moderate toxicity against LLCMK2 cells, but the DA-EO showed high selectivity index (SI) for trypomastigote (SI=33.2) and amastigote (SI=11.7) forms. Treatment with 20 mg/kg DA-EO, LA-EO, or TR-EO for 20 days by intraperitoneal administration reduced parasitemia by 6.36 %, 4.74 %, and 32.68 % on day 7 and by 12.04 %, 27.96 %, and 65.5 % on day 9. These results indicated that DA-EO, LA-EO, and TR-EO have promising trypanocidal potential in vitro, whereas TR-EO has also potential trypanocidal effects in vivo.


Assuntos
Amaranthaceae/química , Lamiaceae/química , Lippia/química , Óleos Voláteis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Macaca mulatta , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Testes de Sensibilidade Parasitária , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação
10.
J Ethnopharmacol ; 264: 113287, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32858197

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Folk medicine reports have described the use of Chenopodium ambrosioides as an anti-inflammatory, analgesic, and anthelmintic herb. These effects, including its activity against intestinal worms, are already scientifically observed. However, the immunological mechanisms of this species in the treatment of Schistosoma mansoni infection are unknown. AIM OF THE STUDY: To evaluate the immunological and anti-Schistosoma mansoni effects of a crude Chenopodium ambrosioides hydro-alcoholic extract (HCE). MATERIALS AND METHODS: For the in vitro analysis, cercariae and adult worms were exposed to different concentrations (0 to 10,000 µg/mL) of the HCE. For the in vivo evaluation, Swiss mice were infected with 50 cercariae of S. mansoni and separated into groups according to treatment as follows: a negative control (without treatment), a positive control (treated with Praziquantel®), HCE1 Group (treated with HCE during the cutaneous phase), HCE2 Group (treated with HCE during the lung phase), HCE3 Group (treated with HCE during the young worm phase), and HCE4 Group (treated with HCE during the adult worm phase). The animals treated with HCE received daily doses of 50 mg/kg, by gavage, for seven days, corresponding to the different developmental stages of S. mansoni. For comparison, a clean control group (uninfected and untreated) was also included. All animals were euthanized 60 days post-infection to allow the following assessments to be performed: a complete blood cells count, counts of eggs in the feces and liver, the quantification of cytokines and IgE levels, histopathological evaluations of the livers, and the analysis of inflammatory mediators. RESULTS: HCE treatment increased the mortality of cercariae and adult worms in vitro. The HCE treatment in vivo reduced the eggs in feces and liver. The number and area of liver granulomas, independent of the phase of treatment, were also reduced. The treatment with HCE reduced the percentage of circulating eosinophils, IgE, IFN-γ, TNF-α, and IL-4. In contrast, the treatment with the HCE, dependent on the phase, increased IL-10 levels and the number of peritoneal and bone marrow cells, mainly of T lymphocytes, B lymphocytes, and macrophages. This effect could be due to secondary compounds presents in this extract, such as kaempferol, quercetin and derivatives. CONCLUSIONS: This study demonstrates that Chenopodium ambrosioides has antiparasitic and immunomodulatory activity against the different phases of schistosomiasis, reducing the granulomatous inflammatory profile caused by the infection and, consequently, improving the disease prognosis.


Assuntos
Antiparasitários/uso terapêutico , Chenopodium ambrosioides , Hepatite/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , Animais , Antiparasitários/isolamento & purificação , Antiparasitários/farmacologia , Hepatite/metabolismo , Hepatite/parasitologia , Hepatite/patologia , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Masculino , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Distribuição Aleatória , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/patologia
11.
Environ Sci Pollut Res Int ; 27(33): 41568-41576, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32691320

RESUMO

To seek new mosquito control agents while avoiding the environmental impacts and toxicity hazards of conventional pesticides, the essential oil of Dysphania ambrosioides was obtained by hydrodistillation and analysed using GC-FID and GC-MS. The compounds 1-methyl-4-(1-methylethyl)-2,3-dioxabicyclo[2.2.2]oct-5-ene (cis-ascaridole), 1-methyl-4-(1-methylethyl) benzene (р-cymene), and 1-isopropyl-4-methyl-1,3-cyclohexadiene (p-mentha-1,3-diene also known as α-terpinene) were identified as the major components. The EO and the major fractions showed remarkable mosquitocidal activity against third instar larvae and adults of Culex quinquefasciatus Say. The oil and fractions were assayed at 3.125, 6.25, 12.5, 25, and 50 µl/l. Mortality was time- and dose-dependent. At 24 h post-exposure at an assayed concentration of 50 µl/l, the larval and adult mortalities ranged between 80.11-100% and 91.22-100%, respectively. Strong larvicidal and adulticidal activities were recorded in the cases of the crude oil and cis-ascaridole. The LC50 values after 24 h of treatment ranged between 6.2-20.1 µl/l and 5.1-13.9 µl/l against larvae and adults, respectively. The corrected percentage mortalities increased over time with the tested plant oil and the major fractions relative to the control. The time required to achieve 50% mortality (LT50) decreased remarkably with all treatments. The tested EO and major fractions effectively inhibited larval acetylcholinesterase activity with IC50 values ranging from 8.44 to 64.80 mM compared with 2.08 × 10-3 mM for the reference standard, methomy. The results indicate the potential of developing natural mosquitocides against C. quinquefasciatus based on the tested EO and its major fractions. Graphical abstract.


Assuntos
Aedes , Culex , Inseticidas , Óleos Voláteis , Animais , Larva , Controle de Mosquitos , Óleos Voláteis/farmacologia , Extratos Vegetais , Folhas de Planta
12.
Microsc Res Tech ; 83(10): 1208-1216, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32500599

RESUMO

The focus of this triple-blind study was on evaluating the effect of chitosan combined with Dysphania ambrosioides (A) extract on the bone repair process in vivo. In total, 60 male Wistar rats (Rattus norvegicus albinus) weighing between 260 and 270 g were randomly selected for this study and distributed into four groups (n = 15). Group C (chitosan), Group CA5 (chitosan + 5% of D. ambrosioides), Group CA20 (chitosan + 20% of D. ambrosioides), and Group CO (Control-Blood clot). In each animal, bone defects measuring 2 mm in diameter were performed in both tibias for placement of the substances. After 7, 15, and 30 days, the animals were sedated and sacrificed using the cervical dislocation technique and the tissues were analyzed under optical microscope relative to the following events: inflammatory infiltrate, necrosis, osteoclasts, osteoblasts, fibroblasts, periosteal, and endosteal bone formation. The data were evaluated to verify distribution using the Kolmogorov-Smirnov test, and variance, using the Levene test; as distribution was not normal, data were subjected to the Kruskal-Wallis and Dunn nonparametric tests (p < .05). A significant inflammatory infiltrate was observed in Group CA5 (p = .008) in the time interval of 7 days, and in Group C at 15 (p = .009) and 30 (p = .017) days. Osteoblastic activity was more significant in Group CA20 (p = .027) compared with CA5 in the time interval of 7 days. Group CA20 demonstrated a significantly higher endosteal and periosteal bone formation value in the time interval of 7 (p = .013), 15 (p = .004), and 30 days (p = .008) compared with the other groups. The null hypothesis was refuted, bone regeneration was faster in spheres with an association of chitosan and 20% extract, and complete bone repair occurred clinically at 15 days and histologically at 30 days. The spheres proved to be a promising method for the biostimulation of alveolar bone repair and bone fractures.


Assuntos
Chenopodium ambrosioides , Quitosana , Animais , Masculino , Ratos , Regeneração Óssea , Quitosana/farmacologia , Modelos Animais de Doenças , Ratos Wistar
13.
Food Chem Toxicol ; 139: 111255, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32165233

RESUMO

The use of chemical pesticides to preserve food commodities is a global issue of concern due to their negative effect on the environment and public health. In recent years, the European Union is trying to reduce their use, favoring alternative or complementary approaches based on natural products. In this scenario, plant-borne essential oils (EOs) represent valid options for Integrated Pest Management (IPM) programs. In the present study, the insecticidal effect of eight EOs obtained from plants from different parts of the world, namely Mentha longifolia, Dysphania ambrosioides, Carlina acaulis, Trachyspermum ammi, Pimpinella anisum, Origanum syriacum, Cannabis sativa and Hazomalania voyronii, were evaluated against two stored-product insect species of economic importance, Prostephanus truncatus and Trogoderma granarium. Simulating a small-scale stored-product conservation environment, an AG-4 airbrush was used to spray maize and wheat with 500 and 1000 ppm of EOs, then T. granarium and P. truncatus were exposed to the stored products and mortality was evaluated over selected time intervals (4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days). The EO of C. acaulis exhibited high efficacy against P. truncatus adults at both tested concentrations by killing > 97% of the individuals exposed to treated maize within 3 days at 500 ppm. The EO of D. ambrosioides eliminated all T. granarium adults exposed to 1000 ppm-treated wheat 2 days post-exposure. At this exposure interval, 91.1% of the exposed T. granarium adults died on wheat treated with 1000 ppm of C. acaulis EO. The EO of M. longifolia at both tested concentrations was the most effective against T. granarium larvae, leading to 97.8% mortality at 500 ppm after 3 days of exposure, and 100% mortality at 1000 pm 2 days post-exposure. At 1000 ppm, the EOs of D. ambrosioides and P. anisum led to 95.6 and 90% mortality, respectively, to larvae exposed to treated wheat for 7 days. Overall, our research shed light on the potential of selected EOs, with special reference to M. longifolia, D. ambrosioides, C. acaulis and P. anisum, which could be considered further to develop effective and alternative grain protectants to manage P. truncatus and T. granarium infestations.


Assuntos
Besouros/efeitos dos fármacos , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Animais , Insetos/metabolismo , Larva/efeitos dos fármacos , Praguicidas/farmacologia , Triticum/parasitologia , Zea mays/parasitologia
14.
Mem. Inst. Oswaldo Cruz ; 115: e200207, 2020. tab, graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135237

RESUMO

BACKGROUND Since the World Health Organization (WHO) declared Coronavirus disease 2019 (COVID-19) to be a pandemic infection, important severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural proteins (nsp) have been analysed as promising targets in virtual screening approaches. Among these proteins, 3-chymotrypsin-like cysteine protease (3CLpro), also named main protease, and the RNA-dependent RNA polymerase (RdRp), have been identified as fundamental targets due to its importance in the viral replication stages. OBJECTIVES To investigate, in silico, two of the most abundant flavonoid glycosides from Dysphania ambrosioides; a medicinal plant found in many regions of the world, along with some of the putative derivatives of these flavonoid glycosides in the human organism as potential inhibitors of the SARS-CoV-2 3CLpro and RdRp. METHODS Using a molecular docking approach, the interactions and the binding affinity with SARS-CoV-2 3CLpro and RdRp were predicted for quercetin-3-O-rutinoside (rutin), kaempferol-3-O-rutinoside (nicotiflorin) and some of their glucuronide and sulfate derivatives. FINDINGS Docking analysis, based on the crystal structure of 3CLpro and RdRp, indicated rutin, nicotiflorin, and their glucuronide and sulfate derivatives as potential inhibitors for both proteins. Also, the importance of the hydrogen bond and π-based interactions was evidenced for the presumed active sites. MAIN CONCLUSIONS Overall, these results suggest that both flavonoid glycosides and their putative human metabolites can play a key role as inhibitors of the SARS-CoV-2 3CLpro and RdRp. Obviously, further researches, mainly in vitro and in vivo experiments, are necessary to certify the docking results reported here, as well as the adequate application of these substances. Furthermore, it is necessary to investigate the risks of D. ambrosioides as a phytomedicine for use against COVID-19.


Assuntos
Humanos , Flavonoides/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Betacoronavirus/efeitos dos fármacos , Glicosídeos/farmacologia , Pneumonia Viral , Cisteína Endopeptidases , Infecções por Coronavirus , Pandemias , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus , SARS-CoV-2 , COVID-19
15.
Environ Sci Pollut Res Int ; 25(11): 10493-10503, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28965298

RESUMO

Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) and Clausena anisata (Willd.) Hook. f. ex Benth. (Rutaceae) are two aromatic species traditionally used in Cameroon to repel and kill insects. The present work was carried out to substantiate this traditional use and to evaluate the possible incorporation in commercial botanical insecticides of their essential oils (EOs). The EOs were distilled from leaves of C. anisata and aerial parts of D. ambrosioides and analyzed by gas chromatography-mass spectrometry (GC-MS). The insecticidal activity of both EOs was investigated against the filariasis vector, Culex quinquefasciatus, and the housefly, Musca domestica. As possible mode of action, the inhibition of acetylcholinesterase (AChE) by the two EOs was investigated as well. The D. ambrosioides EO was characterized by the monoterpene peroxide ascaridole (61.4%) and the aromatic p-cymene (29.0%), whereas the C. anisata EO was dominated by the phenylpropanoids (E)-anethole (64.6%) and (E)-methyl isoeugenol (16.1%). The C. anisata EO proved to be very toxic to third instar larvae of C. quinquefasciatus showing LC50 of 29.3 µl/l, whereas D. ambrosioides EO was more toxic to adults of M. domestica showing a LD50 of 51.7 µg/adult. The mixture of both EOs showed a significant synergistic effect against mosquito larvae with LC50 estimated as 19.3 µl/l, whereas this phenomenon was not observed upon application to M. domestica adults (LD50 = 75.9 µg/adult). Of the two EOs, the D. ambrosioides one provided a good inhibition of AChE (IC50 = 77 µg/ml), whereas C. anisata oil was not effective. These findings provide new evidences supporting the ethno-botanical use of these two Cameroonian plants, and their possible application even in synergistic binary blends, to develop new eco-friendly, safe and effective herbal insecticides.


Assuntos
Clausena/química , Culex/efeitos dos fármacos , Moscas Domésticas/efeitos dos fármacos , Inseticidas/análise , Larva/efeitos dos fármacos , Monoterpenos/química , Óleos Voláteis/química , Peróxidos/química , Folhas de Planta/química , Animais , Camarões , Monoterpenos Cicloexânicos , Cromatografia Gasosa-Espectrometria de Massas , Mosquitos Vetores
16.
Rev. bras. farmacogn ; 26(5): 533-543, Sept.-Oct. 2016. graf
Artigo em Inglês | LILACS | ID: lil-796132

RESUMO

ABSTRACT Dysphania ambrosioides (L.) Mosyakin & Clemants (syn: Chenopodium ambrosoides L.), Amaranthaceae, popularly known as “mastruz”, is an herb widely used in Brazil as anthelmintic. To contribute to the knowledge about medicinal plants, a microscopic analysis was accomplished to describe the main anatomical characters of root, stem, petiole and leaf blade of D. ambrosioides and histochemical tests were performed on the leaf blade. Cross-sections were obtained, by hand, for microscopic analysis of root, stem, petiole and leaf blade; to the leaf blade were still made paradermal sections, scanning electron microscopy analysis, maceration and histochemical tests. The main characters useful in the identification of the plant were: anomalous secondary thickening in the root and stem; presence of idioblasts containing crystal sand in the root, stem, petiole and leaf blade; in these there are also idioblasts with druses; presence of non-glandular and glandular trichomes in the stem, petiole and leaf blade; stomata on the stem, petiole and leaf blade, identified in these as anomocytic and anisocytic; dorsiventral mesophyll and collateral vascular bundles. Maceration revealed that the vessel elements are helical type. Through the histochemical tests, it was evidenced the presence of lipophilic substances, essential oils, oleoresins, phenolic compounds, starch, lignin and calcium oxalate crystals. This work provides support to the quality control of the species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...